
From the Net. .. Sather's Design
Some ofthe recent discussion in the several features that felt clumsy and
comp.lang.eiffel group on the net has some features that needed to be
revolved around design decisions made added for efficiency. One of the
in Sather that differ from those in EiffeL design's guiding principles was sim
Dr. Stephen Omohundro, the chief plicity. There is tremendous pressure
Sather designer, replied with this article toward "creeping featurism" in lan
discussing the motivations behind some

guage design (witness the everofthese design decisions.
growing size of Common Lisp). One

1be design ofa language is nec of the great porential virtues of

essarily a balancing act between con object-oriented design is keeping the

flicting goals and priorities that will language simple and putting new

result indifferent designs. The Sather complexity and features into well

design has undergone many changes encapsulated classes. There were

and the final decisions made were not (and still are) many suggestions for

The Sather Tower in Berkeleymade lightly. I will try to explain additions to Sather. We've tried to be
some of the reasons for the differ extremely careful by adding only routine. Youend up with a big list of
ences between Sather and Biffel. absolutely critical features. fu fact, items far separated from the point of

Sather was developed because several features in the original design use. It is easy to forget to declare
several research projects (particu were eliminated. This has led to a something, or to give it the wrong
larlya general-purpose connectionist design that is easy to remember and declaration, or to forget to remove a
simulator and a high-level vision sys use. 1be syntax description fits on a declaration when it is no longer used.
rem}hereatthefuremati~ICOm page and is very regular (I sometimes In Sather, we followed the lead of
puter Science fustlture required both still forget the syntax rules for C!). C++ by allowing local variable dec
high efficiency and a modular design Ease of implementation was not an laration anywhere a statement is
with complex data structures. fu overriding factor, except to the extent allowed. This also permits a consis
addition, we needed a clean, non that a feature that is easier to imple tent style for attribute declaration and
proprietary object-oriented platform ment is often easier to undetstand initialization, e.g., "foo:INT;" or
00 which to build parallel languages and use in practice (since you have a "foo:INT:=6".
for experimental hardware. Initial good idea of what the compiler is
experience with SmallTalk, C++, going to generate). Simplified Syntax
Objective-C, CLOS, and Self even An awkward aspect of Biffel
tually led to our using Biffel for arises when the programmer must Once we eliminated these
about a year and a half to construct a keep a list of items consistent with essential lists, it became clear that the
system of a couple of hundred code that is textually in a different syntax of classes and routines could
classes. This experience convinced location. For debugging purposes, I be simplified. The Biffel class defIni
us of many of Biffel's strengths but almost always found myself export tion syntax with the portions: "class
also showed us several places where ing almost all of the classes FOO export ... inherit ... rename ...
it was not suitable for our needs. 1be attributes. Biffel currently requires redefme ... feature ... invariant ...
primary problem was efficiency, but putting these items in the "export" end" was hard for me to remember.
some of the language's complexities list at the top of the class construct. In Sather it is just: "class FOO is ...
were also a factor. Mostofmyprogrammingenots end". fuheritance is specified by

It would have been nice to were a result of forgetting to put including a class in the feature list.
maintain compatibility with Biffel, something in this list or changing the Similarly, the construct for defining
but we had to make several semantic name ofa routine without altering the routines of the form: "foo is require
changes that prevented it. Once we list.Jumping back and forth between ... local ... do ... ensure ... end;" was
went that far, we decided to simplify this list and the routine was a frustra hard to remember. We made it simi
several other aspects as well. Heinz tion during editing. fu Sather, we lar to class declarations: "foo is ...
Schmidt has added features to the make features exported by default end;". The "do" in particular seems
Sather emacs editing mode to con and privare by special case. 1be "pri redundant. We made assertions ordi
vert between Sather and Eiffel syn vate" declaration is made at the rou nary statements and allowed them to
tax. This should take care of the tine or attribute definition as in be individually named At compile
syntactic differences, though not the "private foo:INT;". This is textually time, individual assertions can be
semantic ones. fu practice, we find near the item so marked and doesn't turned on or off. This is critically
it's not too difficult to convert classes require keeping two copies ofa name important for "debug" starements
between the two languages. consistent. when they are used to turn on differ

To design Sather, we identified Another example of this prob ent kinds of monitoring, as is quite

~o the features of Biffel that we actually lem in Biffel is having to declare all common. Once assertions can be
w;ed in our code. We also identified local variables at the beginning of a named, we use the convention "assert

Stephen M. Omohundro
(pre) ... end; and "assert (post) ...
end" for pre-conditions and post
conditions rather than having sepa
rate language constructs.

We found it very important to
separate class names from UNIX file
names (to eliminate size constraints,
etc.) and to allow multiple classes in
a single file. This allows classes to be
grouped naturally (e.g., adding test
classes to a classes file, keeping all
the little non-terminal syntax classes
in a parser together).

Explicit Type Specification

The most important semantic
change we made was the introduc
tionofthe ability to explicitly specify
types. While dispatching is essential
to object-oriented programming, we
found that in practice, only a very
small percentage of a system's refer
ences actually referred to more than .
one class ofobject. Unfortunately, in
many cases the Eiffel compiler was
not able to discover this fact (in many
cases, it would not be possible to dis
cover it). We also discovered that
many non-intuitive aspects of the
type system arose from the fact that
any variable could potentially hold
any descendant. In most cases the
programmer knows the type (e.g.,
"a:INT"'), so we made the unmarked
case be that the variable holds the
type specified. To indicateits slightly
higher cost, a dollar sign is used to
indicate that a variable might hold
any descendant object (e.g.,.
"b:$FOO"). In addition to allowing
the programmer to directly specify
potentially more efficient code, the
stronger specifications allow the
compiler to perform stronger type
checking. In this sense, it is a push
toward even stronger type checking
than in Eiffel.

The introduction of the new
type specification flexibility also
cleaned up a number of semantic
issues. Situations often occur where
you want child classes that do not
have all of the features of their par
ents. One example discussed on the
net was that ofclass SQUAREwhich
didn't want the routine "add_vertex"
defined in parent class POLYGON.
Because we can specify the differ
ence between variables that support

dispatching and those that do not, we
can distinguish between routines that
are used in a dispatched fashion from
those that are not. In Sather, we only
require a descendant to be consistent
with its ancestors on those features
which are applied to dispatched vari
ables. Ifno code does "a.add_vertex"
to a variable "a:$POLYGON" then
SQUARE is not required to define
this routine. Calls to "b.add_ vertex"
are fine if "b:POLYGON". This
allowed us to introduce the declara
tion "UNDEFINE", which allows
you to delete features defined in
ancestors.

The ability to explicitly specify
dispatched variables also allowed us
to use the natural contravariant rule
for routine arguments in inherited
routines. This choice was not made
for implementation reasons, as sug
gested by some. In fact, the early ver
sions of the compiler were covariant.
Heinz Schmidt noticed that the rea
sons for this choice, which were ably
defended by Bertrand Meyer for
Eiffel, no longerapplied to the Sather
type system. The reason contravari
ance is more natural is that one wants
any call that is legal on an ancestor
object to still be legal on a descen
dant object.

Let FOO derme the routine
"baz(x:A)" and its child BAR define
the routine "baz(x:B)".If"a" is
declared to be of type FOO, then con
sidera call "a.baz(x)" where ..x.... is of
type"A". This is clearly legal if "a"
holds a FOO object. If "a" holds a
BAR object then it is legal only if A
is a descendant of B. This is the con
travariant rule. With the covariant
rule (that B must be a descendant of
A) this type of call may not be legal.
I believe that Eiffel inserts runtime
checks to catch this kind oferror. The
reason for having to use the less type
safe rule is that it's a commontohave
an argument of the same type as the
class it is dermed in. Thus we want
"baz(x:BAR)" in BAR to replace
"baz(x:FOO)" in FOO. In Eiffel, this
forces the dangerous covariant rule.
In Sather, we have no such problem
because we only need to ensure con
formance if a call is ever made in a
dispatched way. The compiler will
complain if we do "a.baz(x)" if
"a:$FOO" and "x:BAR", but it

should since the code might use fea
tures not defined for "x". Ifwe never
do this kind of dispatched call, then
there is no restriction. That is why we
were able to change to the contravar
iant convention. (By the way, as
someone noted on the net, it is a triv
ial change to the compiler.)

Miscellaneous Issues

We found "once" functions
awkward to use in practice and
decided to go with class variables
(shareds). As in C++, we allow direct
access to routines in classes (e.g.,
"FOO::baz"). This is only possible
because we allow routine calls on
void objects when the type is speci
fied at compile time. This is only
possible because of the "$" conven
tion.

Efficient arrays are critically
important in our work, so we added
them directly to the language
(objects can have a variably sized
array portion after their attributes
with direct access to elements). We
wanted to use the standard notations:
"a[5]", "b[3,2]", "a[5]:=9", etc., so
we had to use curly brackets instead
of square brackets for parameterized
classes.

There are several other interest
ing design issues, but this should
give you an idea of our decision pro
cess. Our goal was to develop a tight,
fast vehicle for developing efficient,
reusable code. The real challenge is
to build powerful libraries on this
base. Sather is primarily needed by
small groups carrying out scientific
research. Our hope is that the tools
and libraries will be useful to other
such groups and that a large collec
tion of reusable classes in a wide
variety of areas will be developed.
Eiffel addresses different needs. We
think that the formation of the Eiffel
Consortiumand recent developments
in the language are important.

Stephen M. Omohundro, Ph.D.
International Computer Science
Institute
1947 Center Street, Suite 600
Berkeley, CA 94704
Telephone: 415-643-9153
Fax: 415-643-7684
Email: om@icsi.berkeley.edu 21

mailto:om@icsi.berkeley.edu

