
Sather is a new object oriented
language derived primarily from
Eiffel. Many design decisions must
be made in the design of a language
and different priorities give rise to
different decisions. Every language
is a compromised response to a large
number of conflicting goals. This
article focuses on the priorities
which informed the design of Sather.
Eiffel reflects a different set of
priorities than those described here
and may well be more appropriate
for certain users.

The International Computer
Science Institute is involved in a
variety of projects that require the
construction of complex software.
Some examples include a general
purpose connectionist simulator; a
high-level vision system based on
intricate geometric data structures;
the support software for a high-speed
parallel computing engine for speech
recognition; and CAD tools for
integrated circuit design. Each of
these applications requires both
complex data structures and very
high efficiency. The complexity of
these projects suggested that the
benefit of switching from C to an
object oriented language would far
outweigh the startup costs.

Sather was initially developed in
response to the needs of the vision
project. Preliminary work with C++
and Objective C showed them to be
insufficiently elean and modular for
the needed tasks. The lack of
garbage collection, parameterized
types, and at the time, multiple
inheritance prevented the
development of software modules
with the desired level of

12 encapsulation and reuse. Work with

The Differences Between Sather and Eiffel

CLOS showed it to be far too
inefficient for the desired purposes.
Eiffel was chosen as the language of
choice and a system with about 150
classes was developed over a period
of 18 months. This experience
demonstrated the power of many
Eiffel concepts, but also exposed
many weaknesses in the design and
implementation for our purposes.
The primary shortcomings from our
perspective were the inefficiency of
the generated code and growing
semantic complexity of the
language. We were also beginning
the design of object oriented
constructs for parallel computers and
needed a non-proprietary compiler
base on which to build. For these
reasons, we undertook the design of
a more efficient, simplified language
which still retained the desirable
features of Eiffel. The design went
through many iterations and many
people made suggestions and
refinements.

The fundamental language
features were retained from Eiffel.
The two primary forms of reuse in
Sather are based on parameterized
classes and object oriented dispatch.
Sather is garbage collected and
supports multiple inheritance.
Classes provide modularity and
encapsulation and all code is defined

within some class. Class names are
in a global namespace and elass
feature names are interpreted relative
to the elass in which they appear.
These two levels of namespace
hierarchy appear exactly right for
projects with several hundred classes
and several tens of features within
each class. Aspects of Eiffel's clean
syntax have been retained. Each
construct is self bracketed by
keywords and there is no need for
"begin/end" constructs. The
grammar is LALR(I) and easily fits
on a page.

Added Features

Several features not found in
Eiffel were added. Shared and
constant features in Sather are
variables that are allocated per class
and may be directly accessed by any
object from the class. Sather arrays
are a part of the language rather than
being merely a special class as in
Eiffel. The memory for objects may
have a variable sized array portion
after the storage for features.
Standard syntax is used to access
and assign to array elements (ego
"a[5]:=3", "e:=b[17,c+d]",
"f[7,2,3].foo"). The code generated
for Sather array access often avoids
a double indirection needed for an
equivalent Eiffel array access.

by Stephen Omohundro

Arrays are used extensively in
the library code. Local variables in
Sather may be declared at the point
of use (as in C++) rather than in a
special"local" section at the
beginning of a routine. Class
features may be declared "private" at
the point of definition (instead of not
appearing in an "export" list at the
beginning of a class definition). A
"break" statement to exit from loops
and a "retumHstatement to exit from
routines were added. The "switch II
statement (analogous to the Eiffel
"inspect" statement) allows arbitrary
expressions in the target clauses.
Conditionally compiled assertions
and debug statements are named in
Sather and an arbitrary subset of
names may be activated on any
given compilation. As in C++,
Sather allows direct access to class
routines, shareds and constants using
the syntax "FOO::routine(S,6y.

The Sather type system has a
major addition to that of Eiffel. In
Eiffel, a variable may hold an object
of any descendent class of its
declared class. In Sather, the
declaration "a:FOO" means that the
variable "a" will hold an object
whose type is "FOO", while
"a:$POO" means that "a" may hold
any descendent of "POO". This often
allows the compiler to do better type
checking and to generate far more
efficient code than it otherwise
could. It also introduces an extra
level of specification which can
clarify the semantics in situations
with complex inheritance. In Sather,
a descendent class need not define
all of the features that its ancestors
define. Such a requirement only
holds for those features which are
applied to "$" variables. Thus if
IIFOO" defines the routine
Hfoo_rout", it's descendents need
only define it if a dispatched access
Ha.fooJout" appears applied to a
variable declared as "a:$FOO". This
solves a problem that has recently
received much discussion. The class
"POLYGON" might define a routine
"add vertex", which is inappropriate

"RECTANGLE". As long as
"add_vertex" is not applied to a
"$POLYGON"variable, this causes
no problems in Sather.

Sather uses the more natural
"contravariant" rule for constraining
the types of function arguments in
inherited classes, while Eiffel uses a
"covariant" rule. This means that in
Sather the arguments of routines
which are used in a dispatched
fashion must have a type in a
descendent which is a super-type of
the type in the parent rather than a
sub-type. This ensures that any code
which has valid types on the parent
will still have valid types on the
child. Eiffel cannot make this natural
choice because it would prevent
many common uses of inheritance.
Because Sather makes the distinction
between dispatched and
non-dispatched type declarations,
and only applies the type constraints
to dispatched usage, these common
uses are still available in a
contravariant framework.

Simplifications

Several Eiffel features were
eliminated or simplified. Expanded
classes and binary operator
overloading were viewed as creating
more complexity than they
elim:inated. Sather provides library
classes to support exception
handling rather than building it into
the language. The complex
exception handling in Eiffel is a
major source of inefficiency. Eiffel
IIonce" functions were eliminated
because the "shared" attributes in
Sather are simpler and may be used
to perform the same function. The
Nlike" construct was eliminated. The
main use for this in our code was to
declare something to have the type
of the current class. A special
declarator "SELF TYPE" is used in
Sather to declare ;uch variables. The
conditionally compiled statements in
Eiffel ("check", "ensure",
"invariant", "require", "variant", and
"debug") were reduced to just
"debug" for a conditionally compiled

statement list and "assert" for a
conditionally compiled boolean test.

The inheritance rules are much
simpler in Sather than in Eiffel.
There is no "rename" construct to
access ancestor features under a
different name. Eiffel has complex
rules for multiple inheritance paths
to the same ancestor class in the
inheritance DAG. In Sather, the
effect of inheritance is exactly as if
the parent class were textually
copied into the descendent class at
the point at which the parent is
inherited. The definitions of later
attributes override the definitions of
earlier attributes with the same
name. In Eiffel, "Create" and
"Clone" are different from every
other function in that they change
the value of a variable they are
applied to. In Sather the only way to
change the value of a variable is to
assign to it. Sather adds the "type"
feature that returns the tag of an
object and is necessary to do
old-style switch-based dispatch.

Sather is much smaller than
Eiffel. Eiffel keywords which were
eliminated in Sather include:
"as", "BITS", "CloneH, HCreaten,
H deferred", "define", H div", "do",
"ensure", "expanded", "export",
"external", "feature", " Porget" ,
"from", "implies", "inherit","infixlI,
"invariant", "is" , "language", "like",
"local II , "mod", "name",
liNochange", "obsolete", "old",
Honce", "prefix", "redefine",
"rename", "repeat", "require",
"rescue", "retry", "unique",
"variant", "Void". "xor".and II

A
".

In several cases features have been
moved from the language into an
appropriate library class.

The Sather Environment

The Sather implementation and
programming environment is
somewhat different from Eiffel's.
More than one class may be defined
in a file and the file name need have
nothing to do with the class name.
Class names may be of any length
and are not restricted to file names ~~o~r~th~-e~d~e~sc~en~d~en~t~cl~a~ss~___

13

Sather Differences
(continued from page 13)

allowed by the operating system.
Many times a natural conceptual unit
consists of many small classes and
it's convenient to put them in the
same file. It's also convenient for
keeping test code in the same file.

The Sather compiler is written in
Sather. Like Eiffel, Sather compiles
to portable e and easily links with
existing e code. The compiler
generates code that optimizes
efficiency over code size. In
particular, Sather does not attempt to
reuse the binaries of ancestor code or
other parameterized classes. This
allows the compiler to compile in
class specific knowledge. On the
other hand, the Sather compiler only
generates code for routines and
classes which are actually used in a
system. The dispatch mechanism in
Sather is based on hash tables and
caching and is extremely efficient in
the most common situations.

Preliminary tests on the Sun
Sparcstation I show Sather is 4 to 50
times faster than Eiffel in basic
dispatching, routine access, and
array access. Code generated by the
current Sather compiler was slightly
faster than c++ on a variety of test

problems, including Towers of
Hanoi, Eight Queens, etc. The
special features of RIse machines
(register windows, etc.) may
exacerbate the efficiency problem
with the generated Eiffel code.

Sather's garbage collector
doesn't have any overhead when it
isn't running, whereas the Eiffel
collector extracts a cost on any
pointer variable assignment. Eiffel's
collector also must keep a stack of
pointers to pointers on the stack.
This keeps these variables from
being put in registers, which can
severely affect performance on RISe
machines. Eiffel's ability to replace
functions by variables in
descendents has been eliminated.
This allows most attribute access to
be done without the ovemead of
function calls. Eiffel tries to ensure
that type errors are impossible if a
program makes it through the
compiler. Sather has no such goal,
though it does try to catch all
common errors. Sather's interface to
e is cleaner and more efficient than
Eiffel's. Sather has compiler
switches to enable array bounds
checking, runtime type checking,
and checking for dispatching from
void variables.

An extensive library of Sather
classes is being developed. As with
the compiler, the design of the
library focuses on efficiency and
extensively uses the efficiency
enhancing features of Sather.
Algorithms and data structures based
on highly amortized efficiency are
used through out.

The Sather compiler and
libraries will be made freely
available with a license designed to
encourage the development of
widely available, well-written,
reusable code, while not restricting
the use of Sather for proprietary
projects. A variety of Sather tools is
under construction, including a GNU
Emacs editing mode and
environment, GOB-based debugger,
browser, etc. A version of Sather for
massively parallel shared memory
machines is also under construction.

Sather is now in internal Beta Test.
Outside Beta should commence soon.
Full release is expect,ed sometime this
summer. Most EO charter subscribers
should receive their Sather manual in
April. EWel Outlook will be keeping a
close watch on further developments.
Expect to see regular Sather coverage in
future issues.

Bertrand Meyer's

Reaction To Sather

Ed. Note: As an extension of
the Q&A interview, J asked Bertrand
Meyer about his initial reaction to the
October, 1990 version ofthe Sather
Manual. His reply follows:

It's a welcome development.
Although I tried to make Eiffel as
small as I could, there is always
room for subsetting and
simplification. Look at Ada: the
worst mistake made by the 000 was
to forbid subsetting. It is quite
possible that without this absurd
policy decision, the lingua franca of
the U.S. computing world today,
instead of being e. would be some
kind of micro-Ada -- and we would
all fare better for it.

I do have two criticisms to
address to the Sather designers,
however. The first is a matter of
form. When discussing the aspects
of Eiffel they do not like, the
Sather document unpleasantly
confuses the language and a
particular ISE implementation
(2.2, I believe). To say that certain
language features are inefficient is
incorrect, unless you really mean
to say that the feature cannot be
implemented efficiently. Often the
Sather Manual criticizes the Eiffel
language where I believe the
criticism should be reserved for a
particular implementation.

The second has to do with
Sather-Eiffel compatibility. If the
authors of Sather disagree with
some Eiffel constructs, and want

to substitute their own, that's fine.
But it serves no useful purpose to
have different conventions on
non-essential matters or constructs
for which there is no conceptual
disagreement. Why Sather should
use the keyword "assert" where
Eiffel has "check", or omit the
keyword udo" to begin a routine, is
beyond my understanding. If Sather
is successful, then some people,
especially students, are going to
have to move between the two
languages. Let's make their lives
easier, not harder.

These problems are
tabl d I h pc.correc e an ope rot essor

Omohundro and his colleagues will
listen. I greatly appreciate their use
of the Eiffel concepts and I hope
their efforts are successful.

14~__~

OUTLOOK
The Independent Source for the International Eiffel Community

'Eiffel' Trademark Transferred To Public Consortium
PARIS--3/11--NICE, the Non-profit
International Consortium for Eiffel,
has acquired the trademark 'Eiffel'
from Interactive Software
Engineering of Santa Barbara, CA.
The consortium will be putting into
place a validation scheme to enable
anyone who writes a conforming
compiler to use the trademark. The
initial reference point for the
language definition will be Dr.
Bertrand Meyer's forthcoming book,
Eiffel: The Language. Version 3,Q,
The manuscript for this book will be
sent to Prentice Hall this month with
publication to follow shortly.

NICE also announced that it plans
to maintain close contact with the
Eiffel user community to ensure that
any decisions made by NICE reflect
real user needs. Eiffel Outlook will be
one of the prime communication
channels for keeping users informed
of its' activities and for soliciting
input from users on techincal and
other issues. The first NICE Report
appears within starting on page 3.

PARIS--3/8-The Eighth International
Eiffel User Conference took place
with 55 attendees, The lively session
including many interesting talks such
as Michael Schweitzer speaking
about the new Eiffel/S System of SiG
Computer, and Kim Walden and Jari
Koistinen speaking about EGL, an
Eiffel class library for 3D graphics,
Other presentations concerned
graphical toolkits, Eiffel applications,
language standards and reusability.
Bertrand Meyer gave the Keynote
Speech which was about current
developments in Eiffel. We will
publish more detailed summaries of
these activities as they become
available to us.

HANOVER--3/12--SiG Computer
of Braunfels, Germany debuted their
Eiffel/S system at CeBit this week.
This is a new implementation of
Eiffel for DOS computers. The
system follows the new 3.Q language
definition, but differs from previous
Eiffel compilers in that it produces
executables directly without the use
of intermediate C code. The system
is claimed to be fast and reasonably
priced. Details are not yet available.

Freider Monninger of SiG
Computer said the system is going
into Beta test in April with deliveries .
expected by June. The main hold up
arthis time is the availability of Dr.
Meyer's new book which will serve
as an important component of the
documentation. Eiffel/S will be
available through ISE's distribution
channels. At this time SiG and ISE
are in negotiations over Eiffel
libraries. SiG will supply some
libraries which were developed
internally, but are also considering
inclusion of portions of ISE's
standard libraries. The initial release
will not include a graphics library.

Si G Computer has agreed to
allow Rock Solid Software to
evaluate the Eiffel/S system in the
near future. Subscribers to Ei.ffd
Outlook should see the results of this

. evaluation in the next issue.

SANTA BARBARA, CA--3/25--ISE
announced today that it has ported
its Eiffel software to the VAX/VMS
operating system. This is a complete
port of the version 2.3 system
including the standard libraries and
tools. ISE also claims that all Eiffel
custumers currently under contract
have been shipped version 2.3.

lfiTbisIssue'
Editorial Assertions 2
The NICE Report3
Tools o/the Trade 6
A Case Study 8
Sather Language 12
The Guessing Game ... 16
From the Net... 19

Volume 1 Number 1, April 1991

Q&A
with Bertrand Meyer

This interview with Bertrand Meyer was
conducted via email and completed just a::
we went to press.

First, let me thank for agreeing to

serve on the Board ofEditors for

EjUel Out12ok.

Let me in turn thank you for taking
this timely initiative. I am sure that
Eiffel Outlook will be a great success
and I wish you the best.

What do you see as the most
. important developments for Eiffel

and/or ISE in the last 12 months?

Internally, we released version 2.3,
which our users universally welcome(
as more complete and more robust.
But the most important news was
external: the creation of the NICE
consortium, transferring control to a
much wider body; the upcoming
availability of other implemental.ions;
the launching of the 1992 ACM Eiffel
conference in Germany; and the
explosion of new interest in Japan.

What was the biggest surprise?

Learning about the MS-DOS
implementation from Si G Computer.
was planning to buy opera tickets for
the Staatstheater in Munich and was
told that I should have a business
dinner instead. The purpose of the
dinner, it turned out, was to tell me
that a DOS version would soon be
ready.

What was the biggest disappointment

Missing the opera. They could have
told me afterwards.

(continued on page 15)

