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Abstract 

A new class of data struC1meS caUed "bumptrees" is described. These . 
struc1meS are useful for efficiently implementing a number of neural 
network related operations. An empirical comparison with radial basis 
functions is presented on a robot arm mapping learning task. Applica
tions to density estimation, classification, and constraint representation 
and learning are also outlined. 

1 WHAT IS A BUMPfREE? 

A bumptree is a new geometric data struc1me which is useful for efficiently learning, rep
resenting. and evaluating geometric relationships in a variety ofcontexts. They are a natural 
generalization of several hierarchical geometric data structures including oct-trees, k--d 
trees. balltrees and boxtrees. They are useful for many geometric learning tasks including 
approximating functions, constraint surfaces. classifIcation regions. and probability densi
ties from samples; In the function approximation case. the approach is related toradial basis 
function neural networks, but supports faster construction, faster access, and more flexible 
modification. We provide empirical data comparing bumptrees with radial basis functions 
in section 2. 

A bumptree is used to provide efficient access to a collection of functions on a Euclidean 
space of interest. It is a complete binary tree in which a leaf corresponds to each function 
of interest. There are also functions associated with each internal node and the defining 
constraint is that each interior node's function must be everwhere larger than each of the 



functions associated with the leaves benealh iL In many cases the leaf functions will be 
peaked in localized regions. which is the origin of the name. A simple kind ofbump func
tion is spherically symmetric about a center and vanishes outside ofa specified ball Figure 
1 shows the structure of a two-dimensional bumptree in this setting. 
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Figure 1: A two-dimensional bwnptree. 

A particularly important special case ofbumptrees is used to access collections ofGaussian 
functions on multi-dimensional spaces. Such collections are used, for example. in repre
senting smooth probability distribution functions as a Gaussian mixture and arises in many 
adaptive kernel estimation schemes. It is convenient to represent the quadratic exponents 
of the Gaussians iIi the tree rather than the Gaussians themselves. The simplest approach is 
to use quadratic functions for the internal nodes as well as the leaves as shown in Figure 2. 
though other classes of internal node functions can sometimes provide faster access. 
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Figure 2: A bumptree for holding Gaussians. 

Many of the other hierarchical geometric data structures may be seen as special cases of 
bumptrees by choosing appropriate internal node functions as shown in Figure 3. Regions 
may be represented by functions which take the value 1 inside the region and which vanish 
outside of it The function shown in Figure 3D is aligned along a coordinate axis and is con
stant on one side ofa specified value and decreases quadratically on the other side. It is rep
resented by specifying the coordinate which is cut. the cut location. the constant value (0 in 
some situations). and the coeffICient of quadratic decrease. Such a function may be evalu
ated extremely efficiently on a data point and so is useful for fast pruning operations. Such 
evaluations are effectively what is used in (Sproull. 1990) to implement fast nearest neigh
borcomputation. The bumptree structure generalizes this kind of query to allow for differ
ent scales for different points and directions. The empirical results presented in the next 
section are based on bumptrees with this kind of internal node function. 
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Figure 3: Internal bwnp functions for A) oct-tIees, kd-tIees. boxtIees (Omohundro, 
1987). B) and C) for balltrees (Omohundro, 1989), and D) for Sproull's higher 

perfonnance kd-tree (Sproull, 1990). 

There are several approaches to choosing a tree structure to build over given leaf data. Each 
of the algorithms studied for balltree construction in (Omohundro, 1989) may be applied to 
the more general task of bwnptree construction. The fastest approach is analogous to the 
basic k-d tree construction technique (Friedman. et. ai, 1977) and is top down and recur
sively spJits the functions into two sets of almost the same size. This is what is used in the 
simulations described in the next section. The slowest but most effective approach builds 
the tree bottom up, greedily deciding on the best pair offunctions to join under a single par
ent node. Intermediate in speed and quality are incremental approaches which allow one to 
dynamically insert and delete leaf functions. 

Bwnptrees may be used to efficiently support many important queries. The simplest kind 
of query presents a point in the space and asks for all leaf functions which have a value at 
that point which is larger than a specified value. The bwnptree allows a search from the root 
to prune any subtrees whose root function is smaller than the specified value at the point. 
More interesting queries are based on branch and bound and generalize the nearest neigh
bor queries that k-d tIees support. A typical example in the case ofa collection ofGaussians 
is to request all Gaussians in the set whose value at a specifIed point is within a specified 
factor (say .001) of the Gaussian whose value is largest at that point. The search proceeds 
down the most promising branches fll'St, continually maintains the largest value found at 
any point, and prunes away subtrees which are not within the given factor of the current 
largest function value. 

2 THE ROBOT MAPPING LEARNING TASK 
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Figure 4: Robot ann mapping task. 




FiglB'e 4 shows the setup which defines the mapping learning task we used to study the ef
fectiveness of the balltree data sttucture. This setup was investigated extensively by (Mel, 
1990) and involves a camera looking aI: a robot ann. The kinematic stale of the ann is de
fined by three angle control coordinates and the visual stale by six visual coordinates of 
highlighted spots on the arm. The mapping from kinematic to visual space is a nonlinear 
map from three dimensions to six. The system attempts to learn this mapping by flailing the 
arm around and observing the visual state for a variety of randomly chosen kinematic 
states. From such a set of nmdom input/output pairs. the system must generalize the map
ping to inputs it has not seen before. This mapping task was chosen as fairly representative 
of typical problems arising in vision and robotics. 

The radial basis function approach to mapping learning is to represent a function as a linear 
combination of functions which are spherically symmetric around chosen centers 

f (x) = LwiSi (x - Xi) • In the simplest form, which we use here, the basis functions are 
j 

centered on the input points. More recent variations have fewer basis functions than sample 
points and choose centers by clustering. The timing results given here would be in terms of 
the number ofbasis functions rather than the number of sample points for a variation of this 
type. Many forms for the basis functions themselves have been suggested. In our study both 
Gaussian and linearly increasing functions gave similar results. The coefficients of the ra
dial basis functions are chosen so that the sum forms a least squares best fit to the data. Such 
fits require a time proportional to the cube of the number of parameters in general. The ex· 
periments reported here were done using the singular value decomposition to compute the 
best fit coefficients. 

The approach to mapping learning based on bumptrees builds lc:x::al models of the mapping 
in each region of the space using data associated with only the training samples which are 
nearest that region. These 1c:x::al models are combined in a convex way according to "influ
ence" functions which are associated with each model. Each influence function is peaked 
in the region for which it is most salient. The bumptree structure organizes the lc:x::al models 
so thai: only the few models which have a great influence on a query sample need to be eval
uated. If the influence functions vanish outside ofa compact region, then the tree is used to 
prune the branches which have no influence. If a model's influence merely dies off with 
distance, then the branch and bound technique is used to determine contributions thai: are 
greater than a specified error bound. 

Ifa set of bump functions sum to one aI: each point in a region of interest, they are called a 
"partition of unity". We form influence bumps by dividing a set of smooth bumps (either 
Gaussians or smooth bumps that vanish outside a sphere) by their sum to form an easily 
computed partiton of unity. Our local models are affine functions determined by a least 
squares fit to local samples. When these are combined according to the partition of unity, 
the value aI: each point is a convex combination of the lc:x::al model values. The error of the 
full model is therefore bounded by the errors of the lc:x::al models and yet the full approxi
mation is as smooth as the Ic:x::al bump functions. These results may be used to give precise 
boWlds on the average number of samples needed to achieve a given approximation error 
for functions with a boWlded second derivative. In this approach, linear fits are only done 
on a small set oflc:x::al samples, avoiding the computationally expensive fits over the whole 
data set required by radial basis functions. This lc:x::ality also allows us to easily update the 
model online as new data arrives. 



bj(x)
If bj (x) are bump functions such as Gaussians, then nj (x) = fonns a partition 
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ofunity. If mj (x) are the local affme models, then the fmal smoothly interpolated approx

imating function is f (x) = L nj (x) mj (x) • The influence bumps are centered on the 
j 

sample points with a width detennined by the sample density. The affine model associated 
with each influence bump is determined by a weighted least squares fit of the sample points 
nearest the bump center in which the weight decreases with distance. 

Because it perfonns a global fit, for a given number ofsamples points, the radial basis func
tion approach achieves a smaller error than the approach based on bumptrees. In tenns of 
construction time to achieve a given error, however, bumptrees are the clear winner.Figure 
5 shows how the mean square error for the robot ann mapping task decreases as a function 
of the time to construCt the mapping. 
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Figure 5: Mean square error as a function of learning time. 

Perhaps even more important for applications than learning time is retrieval time. Retrieval 
using radial basis functions requires that the value of each basis function be computed on 
each query input and that these results be combined according to the best fit weight matrix. 
This time increases linearly as a function of the number of basis functions in the represen
tation. In the bumptree approach, only those influence bumps and affine models which are 
not pruned away by the bumptree retrieval need perfonn any computation on an input. Fig
ure 6 shows the retrieval time as a function of number of training samples for the robot map
ping task. The retrieval time for radial basis functions crosses that for balltrees at about 100 
samples and increases linearly off the graph. The balltree algorithm has a retrieval time 
which empirically grows very slowly and doesn't require much more time even when 
10,000 samples are represented. 

While not shown here, the representation may be improved in both size and generalization 
capacity by a best first merging technique. The idea is to consider merging two local models 
and their influence bumps into a single model. The pair which increases the error the least 



is merged flfSt and the process is repeated until no pair is left whose meger wouldn't exceed 
an error criterion. This algorithm does a good job of discovering and representing linear 
parts ofa map with a single model and putting many higher resolution models in areas with 
strong nonlinearities. 
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Figure 6: Retrieval time as a function of number of training samples .... 

3 EXTENSIONS TO OTHER TASKS 

The bumptree structure is useful for implementing efficient versions of a variety of other 
geometric learning tasks (Omohundro, 1990). Perhaps the most fundamental such task is 
density estimation which attempts to model a probability distribution on a space on the ba
sis of samples drawn from that distribution. One powerful technique is adaptive kernel es
timation (Devroye and Gyom, 1985). The estimated distribution is represented as a 
Gaussian mixture in which a spherically symmetric Gaussian is centered on each data point 
and the widths are chosen according to the local density of samples. A best-first merging 
technique may often be used to produce mixtures consisting of many fewer non-symmetric 
Gaussians. A bumptree may be used to fmd and organize such Gaussians. Possible internal 
node functions include both quadratics and the faster to evaluate functions shown in Figure 
3~. 

It is possible to efficiently perform many operations on probability densities represented in 
this way. The most basic query is to rebJrn the density at a given location. The bumptree 
may be used with branch and bound to achieve retrieval in logarithmic expected time. It is 
also possible to quickly fmd marginal probabilities by integrating along certain dimensions. 
The tree is used to quickly identify the Gaussian which contribute. Conditional distribu
tions may also be represented in this form and bumptrees may be used to compose two such 
distributions. 

Above we discussed mapping learning and evaluation. In many situations there are not the 
natural input and output variables required for a mapping. If a probability distribution is 
peaked on a lower dimensional surface, it may be thought of as a constraint. Networks of 



constraints which may be imposed in any order among variables are natural for describing 
many problems. Bumpttees open up several possibilities for efficiently representing and 
propagating smooth constraints on continuous variables. The most basic query is to specify 
known external constraints on certain variables and allow the network to further impose 
whatever consuaints it can. Multi-dimensional product Gaussians can be used to represent 
joint ranges in a set of variables. The operation of imposing a constraint surface may be 
thought of as multiplying an external constraint Gaussian by the function representing the 
constraint disttibution. Because the product of two Gaussians is a Gaussian. this operation 
always produces Gaussian mixtures and bumpuees may be used to facilitate the operation. 

A representation ofcomtraints which is more like that used above for mappings constructs 
surfaces from local affine patches weighted by inDuence functions. We have developed a 
local analog of principle components analysis which builds up surfaces from random sam
ples drawn from them. As with the mapping structures. a best-fIrSt merging operation may 
be used to discover affine strucblre in a COOSIlaintsurface. 

Fmally. bumptrees may be used to enhance the performance of classifiers. One approach is 
to directly implement Bayes classifiers using the adaptive kernel density estimator de
scribed above for each class's distribution function. A separate bumptree may be used for 
each class or with a more sophisticated branch and bound, a single tree may be used for the 
whole set of classes. 

In summary. bumptrees are a natural generalization of several hierarchical geometric ac
cess structures and may be used to enhance the performance of many neural network like 
algorithms. While we compared radial basis functions against a different mapping learning 
technique. bumpttees may be used to boost the retrieval performance of radial basis func
tions directly when the basis functions decay away from their centers. Many other neural 
network approaches in which much of the network does not perform useful work: for every 
query are also susceptible to sometimes dramatic speedups through the use of this kind of 
access strucwre. 
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