
Bumptrees for Efficient Function, Constraint, and

Classification Learning

Stephen M. Omohundro

International Computer Science Institute

1947 Center Street, Suite 600

Berkeley, California 94704

Abstract

A new class of data struC1meS caUed "bumptrees" is described. These .
struc1meS are useful for efficiently implementing a number of neural
network related operations. An empirical comparison with radial basis
functions is presented on a robot arm mapping learning task. Applica
tions to density estimation, classification, and constraint representation
and learning are also outlined.

1 WHAT IS A BUMPfREE?

A bumptree is a new geometric data struc1me which is useful for efficiently learning, rep
resenting. and evaluating geometric relationships in a variety ofcontexts. They are a natural
generalization of several hierarchical geometric data structures including oct-trees, k--d
trees. balltrees and boxtrees. They are useful for many geometric learning tasks including
approximating functions, constraint surfaces. classifIcation regions. and probability densi
ties from samples; In the function approximation case. the approach is related toradial basis
function neural networks, but supports faster construction, faster access, and more flexible
modification. We provide empirical data comparing bumptrees with radial basis functions
in section 2.

A bumptree is used to provide efficient access to a collection of functions on a Euclidean
space of interest. It is a complete binary tree in which a leaf corresponds to each function
of interest. There are also functions associated with each internal node and the defining
constraint is that each interior node's function must be everwhere larger than each of the

functions associated with the leaves benealh iL In many cases the leaf functions will be
peaked in localized regions. which is the origin of the name. A simple kind ofbump func
tion is spherically symmetric about a center and vanishes outside ofa specified ball Figure
1 shows the structure of a two-dimensional bumptree in this setting.

~~Gi)b
e'ef a abc d e f

2-d leaf functions tree structure tree functions

Figure 1: A two-dimensional bwnptree.

A particularly important special case ofbumptrees is used to access collections ofGaussian
functions on multi-dimensional spaces. Such collections are used, for example. in repre
senting smooth probability distribution functions as a Gaussian mixture and arises in many
adaptive kernel estimation schemes. It is convenient to represent the quadratic exponents
of the Gaussians iIi the tree rather than the Gaussians themselves. The simplest approach is
to use quadratic functions for the internal nodes as well as the leaves as shown in Figure 2.
though other classes of internal node functions can sometimes provide faster access.

A

abc d

Figure 2: A bumptree for holding Gaussians.

Many of the other hierarchical geometric data structures may be seen as special cases of
bumptrees by choosing appropriate internal node functions as shown in Figure 3. Regions
may be represented by functions which take the value 1 inside the region and which vanish
outside of it The function shown in Figure 3D is aligned along a coordinate axis and is con
stant on one side ofa specified value and decreases quadratically on the other side. It is rep
resented by specifying the coordinate which is cut. the cut location. the constant value (0 in
some situations). and the coeffICient of quadratic decrease. Such a function may be evalu
ated extremely efficiently on a data point and so is useful for fast pruning operations. Such
evaluations are effectively what is used in (Sproull. 1990) to implement fast nearest neigh
borcomputation. The bumptree structure generalizes this kind of query to allow for differ
ent scales for different points and directions. The empirical results presented in the next
section are based on bumptrees with this kind of internal node function.

.c@7 /§7LEV g
A. B. C. D.

Figure 3: Internal bwnp functions for A) oct-tIees, kd-tIees. boxtIees (Omohundro,
1987). B) and C) for balltrees (Omohundro, 1989), and D) for Sproull's higher

perfonnance kd-tree (Sproull, 1990).

There are several approaches to choosing a tree structure to build over given leaf data. Each
of the algorithms studied for balltree construction in (Omohundro, 1989) may be applied to
the more general task of bwnptree construction. The fastest approach is analogous to the
basic k-d tree construction technique (Friedman. et. ai, 1977) and is top down and recur
sively spJits the functions into two sets of almost the same size. This is what is used in the
simulations described in the next section. The slowest but most effective approach builds
the tree bottom up, greedily deciding on the best pair offunctions to join under a single par
ent node. Intermediate in speed and quality are incremental approaches which allow one to
dynamically insert and delete leaf functions.

Bwnptrees may be used to efficiently support many important queries. The simplest kind
of query presents a point in the space and asks for all leaf functions which have a value at
that point which is larger than a specified value. The bwnptree allows a search from the root
to prune any subtrees whose root function is smaller than the specified value at the point.
More interesting queries are based on branch and bound and generalize the nearest neigh
bor queries that k-d tIees support. A typical example in the case ofa collection ofGaussians
is to request all Gaussians in the set whose value at a specifIed point is within a specified
factor (say .001) of the Gaussian whose value is largest at that point. The search proceeds
down the most promising branches fll'St, continually maintains the largest value found at
any point, and prunes away subtrees which are not within the given factor of the current
largest function value.

2 THE ROBOT MAPPING LEARNING TASK

Kinematic space ----........ Visual space

R3 ... R6

Figure 4: Robot ann mapping task.

FiglB'e 4 shows the setup which defines the mapping learning task we used to study the ef
fectiveness of the balltree data sttucture. This setup was investigated extensively by (Mel,
1990) and involves a camera looking aI: a robot ann. The kinematic stale of the ann is de
fined by three angle control coordinates and the visual stale by six visual coordinates of
highlighted spots on the arm. The mapping from kinematic to visual space is a nonlinear
map from three dimensions to six. The system attempts to learn this mapping by flailing the
arm around and observing the visual state for a variety of randomly chosen kinematic
states. From such a set of nmdom input/output pairs. the system must generalize the map
ping to inputs it has not seen before. This mapping task was chosen as fairly representative
of typical problems arising in vision and robotics.

The radial basis function approach to mapping learning is to represent a function as a linear
combination of functions which are spherically symmetric around chosen centers

f (x) = LwiSi (x - Xi) • In the simplest form, which we use here, the basis functions are
j

centered on the input points. More recent variations have fewer basis functions than sample
points and choose centers by clustering. The timing results given here would be in terms of
the number ofbasis functions rather than the number of sample points for a variation of this
type. Many forms for the basis functions themselves have been suggested. In our study both
Gaussian and linearly increasing functions gave similar results. The coefficients of the ra
dial basis functions are chosen so that the sum forms a least squares best fit to the data. Such
fits require a time proportional to the cube of the number of parameters in general. The ex·
periments reported here were done using the singular value decomposition to compute the
best fit coefficients.

The approach to mapping learning based on bumptrees builds lc:x::al models of the mapping
in each region of the space using data associated with only the training samples which are
nearest that region. These 1c:x::al models are combined in a convex way according to "influ
ence" functions which are associated with each model. Each influence function is peaked
in the region for which it is most salient. The bumptree structure organizes the lc:x::al models
so thai: only the few models which have a great influence on a query sample need to be eval
uated. If the influence functions vanish outside ofa compact region, then the tree is used to
prune the branches which have no influence. If a model's influence merely dies off with
distance, then the branch and bound technique is used to determine contributions thai: are
greater than a specified error bound.

Ifa set of bump functions sum to one aI: each point in a region of interest, they are called a
"partition of unity". We form influence bumps by dividing a set of smooth bumps (either
Gaussians or smooth bumps that vanish outside a sphere) by their sum to form an easily
computed partiton of unity. Our local models are affine functions determined by a least
squares fit to local samples. When these are combined according to the partition of unity,
the value aI: each point is a convex combination of the lc:x::al model values. The error of the
full model is therefore bounded by the errors of the lc:x::al models and yet the full approxi
mation is as smooth as the Ic:x::al bump functions. These results may be used to give precise
boWlds on the average number of samples needed to achieve a given approximation error
for functions with a boWlded second derivative. In this approach, linear fits are only done
on a small set oflc:x::al samples, avoiding the computationally expensive fits over the whole
data set required by radial basis functions. This lc:x::ality also allows us to easily update the
model online as new data arrives.

bj(x)
If bj (x) are bump functions such as Gaussians, then nj (x) = fonns a partition

. Lbj(x)
j

ofunity. If mj (x) are the local affme models, then the fmal smoothly interpolated approx

imating function is f (x) = L nj (x) mj (x) • The influence bumps are centered on the
j

sample points with a width detennined by the sample density. The affine model associated
with each influence bump is determined by a weighted least squares fit of the sample points
nearest the bump center in which the weight decreases with distance.

Because it perfonns a global fit, for a given number ofsamples points, the radial basis func
tion approach achieves a smaller error than the approach based on bumptrees. In tenns of
construction time to achieve a given error, however, bumptrees are the clear winner.Figure
5 shows how the mean square error for the robot ann mapping task decreases as a function
of the time to construCt the mapping.

Mean Square Error
0.010

0.008

0.006

0.004

0.002

O.OOO-f--=r=-.-or-..,...-r"'~-"'-"

o 	 40 80 120 160
Learning time (sees)

Figure 5: Mean square error as a function of learning time.

Perhaps even more important for applications than learning time is retrieval time. Retrieval
using radial basis functions requires that the value of each basis function be computed on
each query input and that these results be combined according to the best fit weight matrix.
This time increases linearly as a function of the number of basis functions in the represen
tation. In the bumptree approach, only those influence bumps and affine models which are
not pruned away by the bumptree retrieval need perfonn any computation on an input. Fig
ure 6 shows the retrieval time as a function of number of training samples for the robot map
ping task. The retrieval time for radial basis functions crosses that for balltrees at about 100
samples and increases linearly off the graph. The balltree algorithm has a retrieval time
which empirically grows very slowly and doesn't require much more time even when
10,000 samples are represented.

While not shown here, the representation may be improved in both size and generalization
capacity by a best first merging technique. The idea is to consider merging two local models
and their influence bumps into a single model. The pair which increases the error the least

is merged flfSt and the process is repeated until no pair is left whose meger wouldn't exceed
an error criterion. This algorithm does a good job of discovering and representing linear
parts ofa map with a single model and putting many higher resolution models in areas with
strong nonlinearities.

Retrieval time (sees)

0.030 Gaussian RBF

0.020

0.010

Bumptree

O.OOO-+-""""1"-...,,....-...--.-.......-r--..,....--.-.......---.

o 2K 4K 6K 8K 10K

Figure 6: Retrieval time as a function of number of training samples

3 EXTENSIONS TO OTHER TASKS

The bumptree structure is useful for implementing efficient versions of a variety of other
geometric learning tasks (Omohundro, 1990). Perhaps the most fundamental such task is
density estimation which attempts to model a probability distribution on a space on the ba
sis of samples drawn from that distribution. One powerful technique is adaptive kernel es
timation (Devroye and Gyom, 1985). The estimated distribution is represented as a
Gaussian mixture in which a spherically symmetric Gaussian is centered on each data point
and the widths are chosen according to the local density of samples. A best-first merging
technique may often be used to produce mixtures consisting of many fewer non-symmetric
Gaussians. A bumptree may be used to fmd and organize such Gaussians. Possible internal
node functions include both quadratics and the faster to evaluate functions shown in Figure
3~.

It is possible to efficiently perform many operations on probability densities represented in
this way. The most basic query is to rebJrn the density at a given location. The bumptree
may be used with branch and bound to achieve retrieval in logarithmic expected time. It is
also possible to quickly fmd marginal probabilities by integrating along certain dimensions.
The tree is used to quickly identify the Gaussian which contribute. Conditional distribu
tions may also be represented in this form and bumptrees may be used to compose two such
distributions.

Above we discussed mapping learning and evaluation. In many situations there are not the
natural input and output variables required for a mapping. If a probability distribution is
peaked on a lower dimensional surface, it may be thought of as a constraint. Networks of

constraints which may be imposed in any order among variables are natural for describing
many problems. Bumpttees open up several possibilities for efficiently representing and
propagating smooth constraints on continuous variables. The most basic query is to specify
known external constraints on certain variables and allow the network to further impose
whatever consuaints it can. Multi-dimensional product Gaussians can be used to represent
joint ranges in a set of variables. The operation of imposing a constraint surface may be
thought of as multiplying an external constraint Gaussian by the function representing the
constraint disttibution. Because the product of two Gaussians is a Gaussian. this operation
always produces Gaussian mixtures and bumpuees may be used to facilitate the operation.

A representation ofcomtraints which is more like that used above for mappings constructs
surfaces from local affine patches weighted by inDuence functions. We have developed a
local analog of principle components analysis which builds up surfaces from random sam
ples drawn from them. As with the mapping structures. a best-fIrSt merging operation may
be used to discover affine strucblre in a COOSIlaintsurface.

Fmally. bumptrees may be used to enhance the performance of classifiers. One approach is
to directly implement Bayes classifiers using the adaptive kernel density estimator de
scribed above for each class's distribution function. A separate bumptree may be used for
each class or with a more sophisticated branch and bound, a single tree may be used for the
whole set of classes.

In summary. bumptrees are a natural generalization of several hierarchical geometric ac
cess structures and may be used to enhance the performance of many neural network like
algorithms. While we compared radial basis functions against a different mapping learning
technique. bumpttees may be used to boost the retrieval performance of radial basis func
tions directly when the basis functions decay away from their centers. Many other neural
network approaches in which much of the network does not perform useful work: for every
query are also susceptible to sometimes dramatic speedups through the use of this kind of
access strucwre.

References

L. Devroye and L. Gyorfi. (1985) Nonparametrlc Density Estimation.: The L1 View. New
York: Wiley.

1. H. Friedman. 1. L. Bentley and R. A. FmkeL (1977) An algorithm for finding best match
es in logarithmic expected time. ACM Trans. Math. Software 3:209-226.

B. Mel. (1990) Connectionist Robot Motion. P1annin.g. ANeurally-Inspired Approach to Vi
SUJJlly·GuidedReaching. San Diego, CA: Academic Press.

S. M. Omohundro. (1987) Efficient algorithms with neural network behavior. Complex
Systems 1:273-347.

S. M. Omohundro. (1989) Five balltree construction algorithms. International Computer
Science Institute Technical Report TR-89.(Xj3.

S. M. Omohundro. (1990) Geometric learning algorithms. Physica D 42:307-321.

R. F. Sproull. (1990) Refmements to Nearest-Neighbor Searching in k-d Trees. Sutherland,
Sproull and Associates Technical Report SSAPP #184c. to appear in Algorithmica.

