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Abstract 

In this report we consider the use of the Delaunay triangulation for learning smooth 
nonlinear functions with bounded second derivatives from sets of random input output pairs. 
We show that if interpolation is implemented by piecewise-linear approximation over a 
triangulation of the input samples, then the Delaunay triangulation has a smaller worst case 
error at each point than any other triangulation. The argument is based on a nice connection 
between Delaunay criterion and quadratic error functions. The argument also allows us to 
give bounds on the average number of samples needed for a given level of approximation . 

•International Computer Science Institute. Berkeley. CA. 



2 In troduction 

Introduction 


Elsewhere we have described the importance to robotics, machine vision, speech process
ing and graphics of algorithms for learning smooth relationships between variables from 
examples [Omohundro 1987,1988, 1989a]. In this report we consider the task of learning 
nonlinear mappings from 9tk to 9tm

. In fact we only explicitly discuss mappings to 9t, but 
the results extend straightforwardly to 9tm

• In many applications such mappings do not 
vary their slope too quickly. We model this characteristic by considering the class of func
tions which have a bounded second derivative in each direction. A natural approach to 
high-dimensional interpolation is to triangulate the input points and use linear interpola
tion within each triangle. This approximation has the virtue of being continuous and as we 
shall see, amenable to a priori bounds on the error of approximation. It still leaves open the 
question of which triangulation to choose. In this report we show that if one is concerned 
with choosing a single triangulation which will do well over all functions with a second
derivative bound, then a particular triangulation, the Delaunay triangulation is an optimal 
choice. 

This choice also has considerable computational advantages which we discuss elsewhere 
(Omohundro, 1989a]. Triangulations typically consist of a large number of facets in high 
dimensional spaces. Ifone needs to precompute all of these, the computational burden can 
become unreasonable in high dimensions. The simplices in the Delaunay triangulation, 
however, may be detennined by a local criterion. The simplex containing a point may be 
computed on the fly as requests are received. Arguments similar to those in [Friedman, et. 
ai., 1977] and (Devroye, 1986] for fast nearest neighbor queries may be applied to show that 
for points drawn from a smooth underlying distribution, the Delaunay simplex containing 
a given point may be found in a time which is asymptotically only logarithmic in the num
ber of samples. The size of the required data structure is only linear in the number of sam
ples. 

This report begins with precise definitions of the needed concepts. The second section pre
sents the main theorem and its proof through a series of lemmas. The final section uses one 
of the lemmas to give a priori bounds onthe number of samples needed for a given level of 
approximation. 

Basic Concepts 

We denote a k-dimensional Euclidean space by 9\k. Points in this space arc k-tllples of real 
numbers (Xl' ... , xk). Two points detenninea unique line segment which joins them. A set 
S c 9tk is convex if it contains all of the line segments detennined by pairs of its points. The 
convex hull of a set is the smallest convex set containing it. The convex hull of j + 1 points 
Pl' ... , Pj+ 1 in 9tk 

, with j::; k, is a higher dimensional analog of a triangle or tetrahedron. If 
the dimension of the hull is j 1, we call it a j-simplex and say tha t the points are indepen
dent. Some authors refer to the set of points themselves or the interior of the hull as the sim



3 Optimality of the Delaunay Triangulation 

plex. The points Pi are the vertices of the simplex and any subset of them of size 1+ 1 
determines an I-simplex called an I-face of the original simplex. If I < j we ca11 ita proper face. 

We say that a set of points in 9\k is in general position if each subset of fewer than k + 1 points 
is independent. A set of points drawn from a smooth probability distribution will be inde
pendent with probability 1. The convex hull H of a collection of more than k + 1 points Pi 
in general position may be decomposed into simplices with the points as vertices. We say 
that a set of k-simplices with vertices in the Pi is a triangulation of H over the Pi' if their 
union equals H and if any two intersect in only proper faces. Often one extends such a tri
angulation to the whole of 9\k by in essence including the point at infinity. 

The set of points in 9\k which are a fixed distance from a point P form a (k - 1) -sphere cen
tered at P and the sphere together with its interior define a k-ball. The sphere determined 
by a set of j $ k+ 1 independent points is the unique sphere of smallest radius which in
cludes the points (note that the sphere itself must contain the points, not its interior). The 
radius of this sphere may be explicitly written in terms of the coordinates of the points 
through the use of Cayley-Menger determinants [Berger, 1987]. Given a set of I> k points 
Pi in 9\k, we say that a j-simplex determined by j + 1 $ k + 1 of the points is a Oclaunay sim
plex if the interior of the sphere that the simplex determines doesn't contain any of the other 
Pi' The set of all Delaunay k-simplices forms a triangulation of the convex hull of the Pi 
called the Delaunay triangulation [Preparata and Shamos, 1985]. 

Optimality of the Delaunay Triangulation 

In this section we study piecewise-linear approximations of real-valued functions on 9\k. 
We are given the value of the function at the N sample points Pi in general position in 9\k 
for 1 $ i $ N and would like to approximate it at other points. The strategy we will use is 
to choose a triangulation with the given points as vertices and to linearly interpolate the 
function within each simplex of the triangulation. We will only consider the approximation 
inside the convex hull of thep's (so as to study interpolation rather than extrapolation). The 
approximating functions are then piecewise linear and continuous throughout the domain 
of interest. 

Different triangulations will give rise to different approximations and in this section we 
prove a theorem to motivate the use of the Delaunay triangulation for this application. Be
cause we are using piecewise-linear approximations, we will consider functions whose sec
ond derivative is bounded. Let us denote by Fe the set of all real-valued functions on 9\k 
such that the absolute value of the second derivative along any straight line is less than the 
constant 2C. These functions are analogous to the submanifolds of bounded curvature that 
we encounter in the surface learning case. We will show that within this class, the Dc1aunay 
triangulation gives rise to a piecewise linear approximation with the smallest maximum er
ror at each point over the functions in FC' 



4 Optimality 01 the Delaunay Triangulation 

Theorem 1. Let N sample points Pi E 9\k in general position be given and denote their con
vex hull by He 9\k. Let y E H be a test point of interest. For each function IE Fc' let ID be 
the piecewise linear approximation to I defined on H over the Delaunay triangula tion D of 
the vertices Pi and let IT be the piecewise linear approximation over any other triangula
tion T of these vertices. For any such triangulation T and any point y E H we have: 

(EQ 1) 

Thus the maximum error possible with the Delaunay triangulation is less than with any 
other triangulation. 

We will prove this theorem using a succession of lemmas. 

Lemma 1. Let g be a real-valued function on the interval [0, L 1 c 9\ with a bou nded second 
derivative Ig" (x) I ::;; 2C and bounds on the values at the endpoints Ig (0) I ::;; a and 
Ig (L) I ::;; b, where a, b ~ O. Then at every point x in the interval: 

2 b-a 
Ig(x)1 ::;;C(Lx x) + Tx+a. (EQ 2) 

Notice that at any fixed point x, the bound on the magnitude of g (x) is an increasing fu nc
tion of C, L, a, and b. 

b 

g(x) 
x 

L 

-b 

Figure 1. The bounding function f and example 
function g. 

Proof. Let us denote the comparison function on the right hand side of the inequality by 
I(x). Notice that l(x)~O and rex) -2C for XE [O,L] and that i(O) a and 
I(L) b. We begin by showing that g(x) ::;;/(x) under only the assumption th,lt 
gil (x) ~ -2C, g (0) ::;; a, and g (L) ::;; b. The other half, Le. that -g (x) ::;;1 (x), follows from 
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an identical argument using the rest of the conditions. Let us consider the difference func
tion d (x) ;;;; g (x) - f (x) . By the hypotheses, d (0) S; 0, d (L) S; 0, and d" (x) ~ 0 for all 
x E [0, L] . First let us show that d' (x) is non-decreasing. If x2 ;::: Xl then 

X 2 

f d" (x)dx+d' (Xl) ;:::d' (Xl)' (EQ 3) 

Ifg is a counter-example to the lemma and y E [0, L] is a point at which g (y) > f (y) , then 
d (y) > 0. We will show that this cannot happen by considering d' (y) . If d' (y) ;::: 0 then 
because d' (x) is non-decreasing, we have d' (x) ;::: 0 for all x E (y, LJ . But this implies 
that 

L 

deL) fd'(X)dx+d(y) >0 (EQ 4) 

y 

contrary to the condition that d (L) S; 0. Similarly, if d' (y) S; 0, then d' (x) S; 0 for all 
x E [0, y] since d' (x) is non-decreasing. But then 

y 

d(O) = - fd' (x)dx+d(y) >0, (EQ 5) 

o 

again contrary to assumption. Q.E.D. 

Lemma 2. Ifg is a real-valued function on the interval [0, L] c':R which has a bounded sec
ond derivative Ig" (x) Is; 2C, which vanishes at the first endpoint g (0) 0, and whose 
first derivative vanishes at the second endpoint g' (L) = 0 then 

2Ig(x)1 S;C(2Lx-x) (EQ 6) 

at every point x in the interval. The maximum possible absolute value occurs at the right 
endpoint and is CL2

. Notice that this error bound increases in magnitude with C and L. 

C(2Lx-;; 
b 

g(x) 

~--------------------------__~X 
o L 

Figure 2. Bounds when g(x)=O and g'(L)=O. 
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Proof. As above, we need only consider g's with g" (x) ? -2C. We define 
d(x) =g(x) C(2Lx-i) giving: d(O) = 0, d' (L) = O,and d" (x)?O and we need to 
show that d ~ O. As above, d' (x) is non-decreasing and so d' (L) = 0 implies that 
d' (x) ~ 0 for all x E [0, L] . This immediately shows that 

y 

d(y) = d(O) + Jd'(x)dX~O (EQ 7) 

o 

as desired. Q. E. D. 

Lemma 3. Let S be an arbitrary j-simplex in 9{k. For every paint x in the interior of S, there 
is a vertex of S such that the distance from x to the vertex is less than or equal to the radius 
R of the sphere determined by the vertices of S. 

Figure 3. A simplex, whose sphere is centered at 
c. the point x. and the desired vertex v. 

Proof. We prove the lemma by induction on j. If j=2, and the points are a distance d apart, 
then the sphere they determine is centered at their midpoint and has radius d/2. The sim
plex S is a segment and any point in it is within d/2 of the closer end. Now let us assume 
that the lemma is true for all simplices with fewer than j vertices and show that it is true for 
S with j vertices. Let the sphere determined by S. be centered at c and of radius R. Each j
1 face of S together with c determines a j simple1 with all edges leaving c of length R. The 
union of all these simplices contains S. If x is the point of interest, let Sx be a j-l face of S 
such that the simplex determined. by Sx v c contains x. Let y be the intersection of the line 
determined by c and x with Sx' The radius Rx of the sphere determined by Sx must satisfy 
Rx:5: R since Sx is a subset of S. By induction, there is a vertex vof Sx such that the distance 
from y to v is less than or equal to Rx and therefore R. Since both y and c arc a distance less 
than or equal to R from v, so is every point on the line segment between them (the ball of 
radius R centered at v is convex). But x is on this line segment, so the distance from v to x 
is less than or equal to the radius R. Q. E. D. 
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Lemma 4. (a) Given any j-simplex 5 with vertices {Pl' ... , p-+ 1} in 9\k, the functions in Fe 
with the largest absolute error over 5 in an approximation 6y linear interpolation over the 
values at the vertices are 

N k 

(EQ 8) A + "" B-x- - c"" i£""11 £""1 
i= 1 i = 1 

where A and the Bi are arbitrary real constants. Furthermore, the error made in such an 
approximation of f at any point in the simplex is greater than or equal to the error made in 
approximating any other function in Fe at that point. (b) If R is the radius of the sphere de
fined by 5, then the magnitude of the error in approximating any function in Fein the in
terior of 5 is bounded above by CR2. 

Proof. (a) Let e(x) be the error in approximating fby its affine approximation. Because we 
interpolate through the values at the vertices Pi of 5, e must vanish there: e(p) = O. Since 
e differs from f only by linear and constant terms, we see also that e" (t) r (t) = -2C 
along any straight segment in 5 parameterized by the distance t along the segment. If we 
consider an arbitrary segment in 5 and take a and b to be the values of e on its endpoints, 
then the restriction of e to the segment is exactly the bounding function defined in lemma 
1. We prove the present lemma by induction on the dimension j of the simplex. If j=l, we 
need only consider the segment defined by the simplex itself as the domain for the lemma 
above with a=O and b=O to conclude that the absolute error for any other function must be 
less than or equal to e(x) at any point XES. Let us now inductively assume the lemma for 
simplices of dimension smaller than j to prove it for an arbitrary j-simplex S. If the point of 
interest XES is in the boundary of Sf then we just use the inductive result on the face con
taining x. We may do this because the restriction of a function in Fe to a face is in Fe for 
that face. If x is in the interior, choose a vertex v of 5 and let y be the intersection of the 
straight line defined by v and x and the j-l-face opposite v. Applying the inductive result 
to that face, we obtain that the error for any function at y has magnitude less than or equal 
to e(y). To obtain the result for x, apply lemma 1 to the segment joining v and y with a=O 
and b=e(y). Because e is equal to the bounding function of lemma 1 on this segment, the 
magnitude of the error in approximating any function in Feat x must be less than or equal 
to e(x). 

(b) We prove this part of the lemma inductively as well. If j=l, then by lemma 1 with a=b=O, 
the maximum absolute error is at the center of the segment, a distance R from each vertex, 
and has a value bounded by CR2. Otherwise we assume the lemma for simplices with di
mension less than j and prove it for 5 of dimension j. For a given choice of function in Fe
let x be the point in 5 where the magnitude of the approximation error is maximal. If x is in 
the boundary of 5, we use the fact that the sphere determined by a face has radius less than 
or equal to the sphere determined by 5 and the inductive hypothesis to immediately con
clude the result. If x is in the interior, then because it is the maximum, the derivative of the 
error in any direction must vanish. By lemma 3, if R is the radius of the sphere defined by 
5, there is a vertex v within R of x. Consider the straight segment joining v to x of length 
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less than R. The error vanishes at v and its first derivative vanishes at x. By lemma 2 the 
magnitude of the error must be less than or equal to CR2. Q.E.D. 

Lemma 5. If the sphere determined by a simplex 5 strictly contains a point P, then it also 

Figure 4. The sphere determined by the simplex 
ABC contains the point P. 

c 


contains each of the simplices determined by P and a face of 5. Each point of 5 is contained 
in one of these simplices and the worst case error obtained from interpolation on that sim
plex is less than or equal to the error obtained by using S itself. Because the Delaunay sim
plices are the only ones whose spheres do not contain other sample points, this shows that 
at every point their worst case error is less than or equal to that of any other triangulation, 
and so proving the theorem as desired. 

Proof. That S's sphere contains the simplices determined by P and faces of 5 follows from 
the convexity of balls and the fact that each point in such a simplex lies on a line segment 
joining P and a point of the face. To show that each point of 5 is contained in one of these 
simplices, we need only extend the line joining it and P until it hits a face of 5. The point 
will be contained in the simplex determined by that face and P. To see that the worst case 
error functions: 

N 

A + 2,B;x; 
i =1 

C2,x~ 
i 

k 

1 

(EQ 9) 

(EQ 10) 

determined in Lemma 4 are better on these new simplices than on 5, we need only consider 
the difference between them. Let us denote the worst error function on 5 by is and on the 
new simplex by fN' We will show that the difference fs iN is greater than or equnl to 0 on 
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the new simplex. Notice that the quadratic piece of these two functions is identical and so 
the difference is an affine function. This affine function vanishes on the vertices of the face 
of S used in constructing the new simplex and so actually vanishes in the whole hyper
plane containing this face. Affine functions are positive on one side of the hyperplane they 
vanish on and negative on the other. fN vanishes at P, while fs is positive there because P 
is inside its spherical zero set. The difference function is therefore positive at P and so the 
new simplex lies on the positive side of the zero difference hyper-plane. Q. E. D. 

Number of Samples for Given Error 

In this section we use the second part of lemma 4 to bound the average number of samples 
we need to see in order to achieve a given level of approximation. For simplicity, we as
sume that the samples are drawn from the unifonn distribution on the unit cube. For non
uniform, non-vanishing distributions, a similar expression in tenns of the minimum value 
of the probability distribution may be easily obtained. More refined non-uniform estimates 
may be obtained using the methods in [Devroye, 1986]. 

Theorem 2. If samples are drawn unifonnly from the unit cube in 9\k, then the absolute er
ror made in approximating any function in Fe by the Delaunay method will be less than E 

at each point which is at least kJe/C from the boundary of the cube after an average of 

( C )kl2 (k C )- -log-+l (EQ 11) 
,ke 2 ke 

samples have been seen. 

d 
Unit square 

-..... 
S1 s( ~ •C --- /' 

1 

/ --
Figure 5. The point P is J2s away from the edge 
ot the unit square and is contained in circle S 1, S 1 
contains S2 which also contains P and has a 
center C which is inside the unit square, The small 
cube containing C is entirely inside S2 and so Sl , 
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Proof. Consider a tessellation of 9\k by cubes of side s. Any ball of radius R;::: /ks must en
tirely contain the cube which contains its center because a cube's diagonal is of length /ks 
and is the greatest distance between any two of its points. Now let the unit cube be evenly 
tessellated by cubes of side s. Consider a point at least /ks away from the edge of the unit 
cube. Any sphere of radius R;::: /ks which contains this point must also contain a sphere of 
radius R = Jks which contains the point. Because this sphere's center is in the unit cube, 
it must completely contain one of the tessellation cubes and therefore so must the original 
sphere. This shows that if we draw a sample from each tessellation cubel...thcn no DcIaunay 
sphere which contains the test point will have a radius greater than ...;ks. From lemma 4, 
the error we make at the test point will be less than CR2. This will be less than I:: if 
R < Je/C. Thus if we have at least one sample from each cube of side s = J (kl::) Ie, the 
maximum error will be less than e. There are (CI (ke) /12 such cubes.The well-known 
coupon collector result says that the average time to collect randomly chosen coupons from 
N people is less than N (logN + 1) . On average then, we will achieve the desired error 
bound with the stated number of samples. Q.E.D. 
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