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Most actions are stored rather than computed. This paper's an­
swer to the question posed by the symposium title is that most intelligent 
behavior is accomplished without much thinking. It therefore doesn't take 
much time to accomplish even with slow components. In some ways this is a 
rephrasing of what has almost become an AI cliche: "Knowledge is power". 
This phrase is meant to emphasize the importance of stored knowledge over 
fancy inference procedures. If most actions in biological systems are essen­
tially replaying rather stereotyped stored procedures, then the speed issue 
becomes much less problematic. The greatest speed is required in real time 
interactive tasks and if the appropriate cached response has been stored and 
its calling circumstances can be recognized, it may be played back with very 
little delay. It may be that such an approach is essentially forced on a system 
with slow components. The effect on the architecture is to optimize things 
for effective leaming (either by the organism or during evolution) and around 
the task of recognizing the best action for the current context. 

In lower animals, such as the cockroach, the appropriate action for an 
organism to take in a given context is genetically built directly into the 
organism's nervous system. The nervous systems of these animals as well as 
the reflex arcs of higher organisms achieve great response speed by having 
simple networks connecting sensory inputs to appropriate motor ganglia. 
When a cockroach's wind sensor is stimulated (presumably by the approach 
of a predator), it directly initiates an appropriate tuming response unless 
inhibited by higher centers. There are only a few neurons between the sense 
organ and the effector and for greater speed these often have thickened axons. 
The behavioral information at this level is rather directly encoded in the 
pattern of connection between neurons. Higher organisms are more adaptive 
and use networks with large modifiable portions between input and output. 

Brain architecture. Modern neurophysiology is making rapid progress 
in determining the anatomical and functional architecture of the brain and 
nervous system [5]. While there is much left to understand, one of the most 
fundamental features of the emerging picture is that the brain is made up of 
a number of functionally different areas joined together by ordered bundles 
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of interconnecting fibers. The cerebral cortex is quite Itructured and much 
progress has been made in mapping its interconnection Itructure. In 1909 
Brodmann decomposed 'he cortex into 52 difFerent areas based on IUbtle 
anatomical difFerences in 'he lize and density ofc::ells, 'he layer Btructure, 
and the density ofaxons innervating each region [1]. More recent work has 
shown that the partition defined by Brodmann's areas corresponds well to .. 
partitions defined both by distinct, functional behavior and by the innervation 
of individual bundles of interconnecting fibers. These more recent studies 
indicate a slightly finer decomposition than Brodmann's but the total number 
of areas is estimated to be at most about 200 [21. 

Much progress is being made on mapping out the interconnection pattern 
of these areas. For example, studies of the visual system of the macaque mon­
key have identified twelve areas split into two major channels, one specialized 
for motion perception and one for form perception [31. Each area roughly 
preserves the spatial layout of the retina, the interconnection graph of the 
areas has a hierarchical structure in which the modules fit naturally into six 
successive layers, and most areas have inputs and outputs to only one or two 
others. V2, the area with the largest number of outputs innervates five other 
areas and MT, the area with the largest number of inputs is innervated by 
four other areas. In [61 the New World monkey is described as having ten 
visual areas and the macaque as having seven somatosensory areas, and six 
auditory areas. These areas all tend to be topographically structured. The 
more complex systems appear to have evolved by introducing more cortical 
areas. An early animal like the bedgehog apparently has only two visual and 
two somatosensory areas. 

The type of computation that can be performed in a brain is severely 
constrained by the limitations of neurons. The total time to perform an 
interesting computation such as recognizing an object is about 0.5 seconds, 
while an indiVidual neuron is only capable of firing in time intervals of about 
0.005 seconds. Therefore only about 100 layers of neurons from sensory in­

put to motor output can be involved in such a computation [41. This limit, 

together with physiological features described above suggests that intelligent 

computations can be performed in networks consisting of less than 200 mod­

ules, each of which performs a function that can be accomplished within a 

few layers of neurons. There are probably at most 20 to 40 modules along 

any path from input to output. Each module, while quite restricted in depth 

by the speed of neurons, may be quite wide and can perform much of its 

computation in parallel. There are estimated to be about 1011 neurons in 

the human brain. 


Lower level functions are parallel. In early animals information 

:flowed directly from sensory input to motor output. In higher animals this 

same basic :flow still exists but several higher levels control it. The represen­

tation of information near the periphery is rather direct and highly parallel. 

The visual information on the retina is conveyed on a topographically mapped 

bundle of about 106 fibres and the firing of a single neuron is directly corre­

lated to sensory information in a given region. A similar statement holds for 
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the auditory and IOmatoeensory maps, as well as for tbaee neurons involved 
in motor control. Each of these peripheral areas is able to perform a limple 
eet or preapecified highly parallel operations under higher level control. The 
different areas are non-interacting at this stage and may he thought of as 
implementing separate processes in MIMD fashion. Within each area, many 
separate columns perform the same operations on diffpent portions of the 
input under the control or fairly limpJe signals from lUgher levels. These 
regions may be thought or as analogous to SIMD machines. 

It will be very important to identify the operations a,-a.ilable from these 
highly parallel modules. In reference [10] psychophysical data is used to try 
to infer the basic "visual routines" into which high level \isual cognition tasks 
are compiled into. A number of candidate operations are also suggested by 
neurophysiological data. Early the visual pathway there are modules which 
do some kind of edge detection, color extraction, lightness compensation, and 
motion extraction. One very useful task would be to return the location of 
the unit of a particular type which is firing most strongly. This would be a 
neurophysiological correlate to our ability to pick out and focus attention on 
the brightest spot in an image. Similarly we can in parallel pick out a red 
dot in a green field, or an X in a field of O's or a pin prick on the body's 
surface. Limitations on performance of these tasks (conjunctions like finding 
red X's require serial scanning) should give us insight into the underlying 
operations. 

Higher level functions are serial. There is much psychological evi­
dence that the higher level control is essentially serial in nature and runs on 
the exceedingly slow clock cycle predicted by neural limitations. For exam­
ple, children count objects a little more slowly than one per second. Studies 
of performance on reasoning tasks are consistent with the estimate that a 
single high level "procedure call" takes about 50 to 100 milliseconds (about 
10 or 20 neuron firings). In petceptual studies, one finds the phenomenon of 
"focus of attention" in every modality. It appears that the higher level cen­
ters must choose a particular portion of a particular sensory input to work 
on. In contrast to the operations at the periphery, the high level system 
appear quite general and is capable of learning arbitrary relationships and 
performing arbitrary operations. 

The high-level system has access to a declarative memory in which it 
may store and retrieve items at will (subject to hardware capabilities). This 
memory must be capable of associative retrieval based on partial information. 
In the early stages of performance of a task, it may run in "interpreted" 
mode in which the steps of a procedure are stored declaratively and carried 
out with error checking and reality testing. There appears to be a separate 
"procedure" memory which can be used to quickly carry out long strings of 
prestored actions. These actions are built up in chunks over long periods 
of practice using interpreted actions from the declarative representation. It 
would be extremely dangerous for the system to be able to directly modify 
the procedural memory for it could insert code saying things like: "don't do 
anything ever again". The process of "chunking" useful procedural elements 
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seems to occur at a universal rate througout the system. (8) and may therefore 
occur everywhere by using the same mechaniem. 

Learning inhibits parallelism. If stored information is central to an 
organism's functioning, its architectural design and representation schemes 
should be organized to build it up very efficiently. This may be one reason 
why the high level operatio1\,s are serial. It is much ea.siu to modify pro­
cedures (as one must do in leaining and evolution) if the behavior of their 
components are well defined and non-interacting. Eperience with program­
ming parallel computers shows that it is extremely difficult to craft correct 
programs with interacting MIMD streams of control. Modification of such 
programs is even more difficult. In contrast, programming and debugging 
programs on SIMD machines, like Thinking Machines' Connection Machine, 
is very straight forward and much like serial programming. The high level 
center has a similar problem in controlling the parallel hardware of the rest 
of the brain. Because modifiability is so critical, I am not suprised a single 
stream of control was adopted there as well. 

How much parallelism do we need in computers? I have argued 
that memory (either built in or aquired) is more important than computa­
tion. In brains neurons appear to be both the locus for memory and for 
computation. Having a large memory thus gives the system the opportunity 
to do massively parallel computation at no additional hardware cost. We 
may ask how much of this parallelism is useful in computers designed to 
perform functions similar to the brain's. The critical question in analysing 
the parallelism of the brain is how many of the neurons in the system are 
actually doing useful computation at any moment. Because of the direct cod­
ing scheme in the periphery, most of the computational power of the neural 
hardware there is wasted. For example, the neurons in a reflex arc only do 
useful computation for the organism when that reflex is instantiated. Sim­
ilarly; there are a large number of internal pain receptors which fortunate 
people never know exist. 

As we move to higher levels centers, it is important that neural hardware 
be shared amongst processes, both to enhance hardware utilization and to 
enhance generalization during learning. These two facets of distributed rep­
resentations may be seen even in representing a single real parameter. In 
the presence of noise, a "coarse coded" representation in which the parame­
ter's value space is decomposed into overlapping receptive fields gives much 
finer resolution than a nonover-Iapping representation. Similarly, in learn­
ing a nonlinear mapping from one such domain to another one, the coarse 
coded representation automatically generalizes by continuity while the non­
overlapping representation gives no generalization. 

Clever algorithms can replace much brute parallelism. Exactly 
how much gain in computation can be achieved by this lcind of shared rep­
resentation is an important open question. I have argued [9] that many of 
the tasks performed by current neural network models can be performed far 
more efficiently on serial computers by using algorithIm drawn from com­
putational geometry. For example, I showed that a million item associative 
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memory could be implemented over a billion times more efficiently using 
these algorithms rather than a limple neural network aJaorithm. This huge 
factor arises because much of the computational efl'ort in a neural network 
simulation is unnecte8sary for the achievement of the pl. For example in 
a network of. perceptIOn-like threshold units, each neuron corresponds to a 
hyperplane in the input space. Whether the neuron fires or Dot indicates 
whiCh side of this hyperplane the input point lies on. A network represents 
a subset of states by approximating it by these hyperplanes. To determine if 
an input state is in the stored subset, it is oompared with each hyperplane. 
In computer science we often do this kind of search by a divide and oonquer 
technique. After we have tested the input against several hyperplanes, we 
ca.n prune away many of the tests. In this way we can implement associative 
memories with only a logarithmic number of tests as opposed to the linear 
number performed by straightforward network models. By appropriate in­
dexing of data, much associative retrieval can be implemented using only 
the very limited parallelism used in the address logic of the memory chips in 
serial oomputers. 

Summary. The essential speed of the brain oomes from ca.ching a large 
store of procedures and experiences. Fast access to this information is pro­
vided by several modules acting in parallel each of whidl operates in parallel 
over its modality. These modules are controlled in serial by a higher level sys­
tem which utilizes cached procedures built up by learning from slow declara­
tive representations. The operation is serial because it is too difficult to plan 
and modify multiple streams of oontrol. The associative memory functions 
for these operations may be implemented efficiently OD serial machines by 
using clever organization principles. There appears to be ample opportunity 
to emulate parts of the brain'. parallelism but we must be careful not to miss 
algorithms ~hich make better use of engineering hardware. 
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